Control of growth and inflammatory response of macrophages and foam cells with nanotopography

نویسندگان

  • Mohammed Mohiuddin
  • Hsu-An Pan
  • Yao-Ching Hung
  • Guewha Steven Huang
چکیده

Macrophages play an important role in modulating the immune function of the human body, while foam cells differentiated from macrophages with subsequent fatty streak formation play a key role in atherosclerosis. We hypothesized that nanotopography modulates the behavior and function of macrophages and foam cells without bioactive agent. In the present study, nanodot arrays ranging from 10- to 200-nm were used to evaluate the growth and function of macrophages and foam cells. In the quantitative analysis, the cell adhesion area in macrophages increased with 10- to 50-nm nanodot arrays compared to the flat surface, while it decreased with 100- and 200-nm nanodot arrays. A similar trend of adhesion was observed in foam cells. Immunostaining, specific to vinculin and actin filaments, indicated that a 50-nm surface promoted cell adhesion and cytoskeleton organization. On the contrary, 200-nm surfaces hindered cell adhesion and cytoskeleton organization. Further, based on quantitative real-time polymerase chain reaction data, expression of inflammatory genes was upregulated for the 100- and 200-nm surfaces in macrophages and foam cells. This suggests that nanodots of 100- and 200-nm triggered immune inflammatory stress response. In summary, nanotopography controls cell morphology, adhesions, and proliferation. By adjusting the nanodot diameter, we could modulate the growth and expression of function-related genes in the macrophages and foam cell system. The nanotopography-mediated control of cell growth and morphology provides potential insight for designing cardiovascular implants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory effect of Cinnamon on prevention of foam cell formation in platelet and monocytes co-culture

Introduction: Atherosclerosis is one of the leading causes of cardiovascular disease. Following endothelial damage and platelet aggregation in that area and the recruitment of monocytes and their conversion to macrophages, LDL gradually accumulates under the endothelial artery wall and gradually oxidized and convert to oxi-LDL. By swallowing it, the macrophages turn into foam cell and then athe...

متن کامل

Effect of Peganum Harmala Seeds Extract on Nitric Oxide in U937 Monocytes and Macrophages

Background and Aims: Nitric oxide (NO) has an essential role in inflammation and has been related to pathogenesis and the progress of numerous inflammatory-based diseases, including some cancers. Peganum harmala (P. harmala) is a medicinal plant used for the treatment of numerous diseases such as several infections. Also, anti-inflammatory effects of P. harmala extracts and its derivatives (har...

متن کامل

Calcitriol modulates the effects of bone marrow-derived mesenchymal stem cells on macrophage functions

Objective(s):Some evidence showed that calcitriol has an important role in regulating growth and differentiation of mesenchymal stem cells (MSCs). However, the interaction between mesenchymal stem cells and macrophage is not clear yet.  The current study was done to investigate the in vitro effects of calcitriol on the interactions between bone marrow-derived MSCs and rat macrophages. Material...

متن کامل

TNF-α iNOS Augmentation Due to Macrophages and Neutrophils Activity in Samples from Patients in Intensive Care Unit with COVID-19 Infection

Background and Aims: Cells and secreted molecules by the innate immune system are the essential factors in the pathogenesis and determining the severity of inflammation in COVID-19 patients. Severe inflammation results from increased activity of neutrophils, macrophages, and other cells with their products. Inflammatory cytokines such as tumor necrosis factor-α (TNF-α) increases the severity an...

متن کامل

P 100: Stem Cells as Neuroinflammatory Modulator in TBI: A Narrative Review

Traumatic brain injury (TBI) is physical damage to the brain structure which has a high global rate of mortality and morbidity. TBI can cause intense inflammatory response due to accumulation of leukocytes in cerebral matrix and activation of microglia. Microglia can differentiate into M1 macrophages or M2 macrophages following the changes in biochemical properties of brain tissue. M1 sub type ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012